Efficiency of functional brain networks and intellectual performance.

نویسندگان

  • Martijn P van den Heuvel
  • Cornelis J Stam
  • René S Kahn
  • Hilleke E Hulshoff Pol
چکیده

Our brain is a complex network in which information is continuously processed and transported between spatially distributed but functionally linked regions. Recent studies have shown that the functional connections of the brain network are organized in a highly efficient small-world manner, indicating a high level of local neighborhood clustering, together with the existence of more long-distance connections that ensure a high level of global communication efficiency within the overall network. Such an efficient network architecture of our functional brain raises the question of a possible association between how efficiently the regions of our brain are functionally connected and our level of intelligence. Examining the overall organization of the brain network using graph analysis, we show a strong negative association between the normalized characteristic path length lambda of the resting-state brain network and intelligence quotient (IQ). This suggests that human intellectual performance is likely to be related to how efficiently our brain integrates information between multiple brain regions. Most pronounced effects between normalized path length and IQ were found in frontal and parietal regions. Our findings indicate a strong positive association between the global efficiency of functional brain networks and intellectual performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension

Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...

متن کامل

Evaluation of Model-Based Methods in Estimating Dynamic Functional Connectivity of Brain Regions

Today, neuroscientists are interested in discovering human brain functions through brain networks. In this regard, the evaluation of dynamic changes in functional connectivity of the brain regions by using functional magnetic resonance imaging data has attracted their attention. In this paper, we focus on two model-based approaches, called the exponential weighted moving average model and the d...

متن کامل

P27: Brain Network as a Pivotal Part in Intelligence Function

Neuroimaging findings have proposed that some brain regions including the precuneus, posterior cingulate, and medial prefrontal cortex play an essential role of a structural core in the brain. Network organization endures rapid alterations in development with changes in axonal synaptic connectivity, white matter volume, and the thickness of corresponding cortical regions. Structural maturation ...

متن کامل

Analyzing the association between functional connectivity of the brain and intellectual performance

Measurements of functional connectivity support the hypothesis that the brain is composed of distinct networks with anatomically separated nodes but common functionality. A few studies have suggested that intellectual performance may be associated with greater functional connectivity in the fronto-parietal network and enhanced global efficiency. In this fMRI study, we performed an exploratory a...

متن کامل

Tinnitus Identification based on Brain Network Analysis of EEG Functional Connectivity

Introduction: Tinnitus known as a central nervous system disorder is correlated with specific oscillatory activities within auditory and non-auditory brain areas. Several studies in the past few years have revealed that in the most tinnitus cases, the response pattern of neurons in auditory system is changed due to auditory deafferentation, which leads to variation of the brain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 29 23  شماره 

صفحات  -

تاریخ انتشار 2009